MTH 605: Topology I
 Homework V

(Due 16/10)

1. Show that any covering space of the torus T is isomorphic to T, or the plane, or $S^{1} \times \mathbb{R}$.
2. Find all connected 2 -sheeted, 3 -sheeted, and 4 -sheeted covering spaces of the figure 8 space $S^{1} \vee S^{1}$ up to isomorphism.
3. Assume that $\pi_{1}\left(S^{1} \vee S^{1}\right) \cong\langle a, b\rangle$, the free group on two letters a and b. Up to isomorphism, find the covering spaces of $S^{1} \vee S^{1}$ that corresponds to the subgroups $\langle a\rangle \leq \pi_{1}\left(S^{1} \vee S^{1}\right)$ and $\langle b\rangle \leq \pi_{1}\left(S^{1} \vee S^{1}\right)$.
4. Given a group and a normal subgroup N, show that there exists a normal covering $\widetilde{X} \rightarrow X$ with $\pi_{1}(X) \cong G, \pi_{1}(\widetilde{X}) \cong N$. and the deck transformation group $G(\widetilde{X} \rightarrow$ $X) \approx G / N$.
5. Given covering actions of groups G_{1} on X_{1} and G_{2} on X_{2}, show that the action of $G_{1} \times G_{2}$ on $X_{1} \times X_{2}$ defined by $\left(g_{1}, g_{2}\right)\left(x_{1}, x_{2}\right)=\left(g_{1}\left(x_{1}\right), g_{2}\left(x_{2}\right)\right)$ is a covering space action, and that $\left(X_{1} \times X_{2}\right) /\left(G_{1} \times G_{2}\right) \approx X_{1} / G_{1} \times X_{2} / G_{2}$.
6. For a covering space $p: \widetilde{X} \rightarrow X$ with X connected, locally path-connected, and semilocally simply-connected, show that
(a) The components of \widetilde{X} are in one-to-one correspondence with the orbits of the action of $\pi_{1}\left(X, x_{0}\right)$ on the fiber $p^{-1}\left(x_{0}\right)$.
(b) Under the Galois correspondence between connected covering spaces of X and the subgroups of $\pi_{1}\left(X, x_{0}\right)$, the subgroup corresponding to the component of \widetilde{X} containing a given lift $\widetilde{x_{0}}$ of x_{0} is the stabilizer of $\widetilde{x_{0}}$, the subgroup consisting of elements whose action on the fiber leaves $\widetilde{x_{0}}$ fixed.
7. Let X and Y be topological spaces. Suppose there exists continuous maps $f: X \rightarrow$ Y and $g: Y \rightarrow X$ such that $f \circ g \simeq i_{Y}$ and $g \circ f \simeq i_{X}$. Then X is said to be homotopically equivalent to Y (or X is said to have the same homotopy type as Y), denoted by $X \simeq Y$.
(a) Please read Lemma 58.4, Corollaries 58.5-58.6, and Theorem 58.7 from Munkres.
(b) Show that if a space X is contractible, then X has the same homotopy type as a point.
(c) Show that if A is a deformation retract of X (see solution to Problem 6 of the MTH 605 midterm), then $X \simeq A$.
(d) Give a counterexample to show that the converse of (b) does not hold always. [Hint: Consider $X=\cup_{n \in \mathbb{Z}_{+}}(1 / n) \times I$ and $x_{0}=(0,1)$.]
